冯紫微 1,2周宝升 3张涛 3牛得田 3[ ... ]檀财旺 1,2,*
作者单位
摘要
1 哈尔滨工业大学(威海)山东特种焊接技术重点实验室,山东 威海 264209
2 哈尔滨工业大学先进焊接与连接国家重点实验室,黑龙江 哈尔滨 150001
3 国家高速列车青岛技术创新中心,山东 青岛 266108
铝合金与轻质高强的碳纤增强尼龙66复合材料(CF/PA66)的高质量连接是实现轨道交通等领域结构轻量化的重要手段之一。然而,由于二者物化差异大,二者难以实现激光直接连接。为探究铝合金与CF/PA66激光直连工艺及其连接机理,以激光功率为变量,揭示了不同热输入下接头宏观形貌、CF/PA66熔化宽度及界面结合的变化规律,建立了激光功率与接头拉剪性能的联系。结果表明,随着激光功率的增加,CF/PA66熔宽增加,铝合金与CF/PA66的实际接触面积扩大,从而接头承载力提高。然而,热输入过高将会导致树脂分解,界面产生气孔,接头性能降低。接头拉剪力在激光功率为1100 W时达到最大值2571.6 N(拉剪强度为10.2 MPa)。能谱与X射线光电子衍射仪(XPS)的分析结果表明,铝合金与CF/PA66激光直连过程中界面产生了新的化学键“Al—O—C”及“Al—C”,二者因此形成了紧密的界面冶金结合,进而获得了高质量接头。
材料 激光连接 碳纤增强尼龙66复合材料 铝合金 结合机理 化学键 
中国激光
2022, 49(13): 1303002
作者单位
摘要
暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
超快激光具有极短的脉宽和极高的峰值强度,已被广泛应用于等离激元纳米材料的加工。在极高的激光功率密度下,等离激元纳米材料中的自由电子吸收入射光子能量成为热电子,然后通过电子与晶格的耦合作用使得晶格温度升高,诱导等离激元纳米材料产生光热形变。根据激光功率密度与熔化沸腾阈值的关系,综述了等离激元材料的三种光热形变——阈值熔化、表面原子扩散和激光烧蚀的不同原理;同时还介绍了等离激元纳米材料超快激光光热形变在多维光存储、结构色彩色打印和信息加密隐写等领域的应用。
激光光学 光热形变 表面等离激元 超快激光 阈值 
激光与光电子学进展
2020, 57(11): 111401
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
2 Laboratory of Artificial-Intelligence Nanophotonics and CUDOS (Centre for Ultrahigh bandwidth Devices for Optical Systems), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producing graphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.
graphene oxides nanophotonics direct laser writing 
Opto-Electronic Advances
2018, 1(2): 170002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!